杜祖亮 DU ZL
李林松 LI LS
武四新 WU SX
周少敏 ZHOU SM
赵伟利 Zhao WL
白 锋 Bai F
程 纲 Cheng G
赵 勇 Zhao Y
贾 瑜 Jia Y
申怀彬 Shen HB
蔡国发 Cai GF
姚 晰 Yao X
鞠 婕 Ju J
李 萌 LI M
时新建 SHI XJ
孙 燕 Sun Y
杜 聪 DU C
梅 俊 MEI J
近期发表的论文 |
入职河南大学后 53. Metal-Phosphonate-Organic Network as Ion Enrichment Layer for Sustainable Zinc Metal Electrode with High Rate Capability, X. He, Y. Qian, Y. Wu, Z. Yan, X. Lin, X. Kong, Y. Zhao*, Lei Jiang, Liping Wen*, Angewandte Chemie International Edition, 2024, ACCEPTED.https://onlinelibrary.wiley.com/doi/10.1002/anie.202411563 52. Accelerating S↔Li2S Reactions in Li–S Batteries through Activation of S/Li2S with a Bifunctional Semiquinone Catalyst, X. Zhu; T. Bian; X. Song; M. Zheng; Z. Shen; Z. Liu; Z. Guo; J. He; Z. Zeng; F. Bai; L. Wen; S. Zhang; J. Lu*; Y. Zhao*, Angewandte Chemie International Edition, 2024, 63(5), e202315087. https://onlinelibrary.wiley.com/doi/10.1002/anie.202315087 51. Uniform Nanoscale Ion-selective Membrane Prepared by Precision Control of Solution Spreading and Evaporation, T. Bian, X. Wang, Q. Zhang, X. Zhu, J. Jiao, Z. Hou, Q. Han, Z. Guo, L. Wen, L. Jiang, Y. Zhao*, Nano Letters, 2024, 24(7), 2353-2359. https://pubs.acs.org/doi/full/10.1021/acs.nanolett.3c04847. 50. Na+ Enriched Quinoid Polymer Layer with Fast Ion Transport for Dendrite-Free Sodium Metal Batteries with High Cyclic Stability, Q. Yue, Z. Shen, R. Shi*, Q. Zhang, L. Liu, D. Shi, S. Jiao, Y. Zhao*, ACS Energy Letters, 2024, 9, 2265-2275. https://pubs.acs.org/doi/10.1021/acsenergylett.4c00376. 49. Electrolyte Superwetting and Electrode Friendly of Porous Membrane for Better Cycling Stability of Lithium Metal Batteries, Yunchong Feng, Xuebing Zhu, Tengfei Bian, Zewen Liu, Long Zhao, Jinhao Wang, Jinling He, and Yong Zhao*, Small, 2024, 2401940. https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202401940 48. Solvation structure regulation for an ether/ether biphasic electrolyte to balance cathodic and anodic reactions in metal-based batteries,Qing Han, Shilong Jiao, Xiao Liu, Tengfei Bian, Yong Zhao, Journal of Materials Chemistry A, 2024, DOI: 10.1039/d3ta07825f, https://pubs.rsc.org/en/content/articlelanding/2024/ta/d3ta07825f 47. Ion conducive solid-electrolyte-interphase on lithium metal prepared by NO3− short-range compensation strategy for better cycle life of high-voltage batteries, J. Wei, Z. Liu, Q. Zhang, K. Guo, Y. Shi, C. Wang, L. Zhao, S. Wu, Y. Zhao*, Energy Storage Materials, 2024, 68, 103352. https://www.sciencedirect.com/science/article/pii/S240582972400179X 46. Rationally coordinating polymer enabling effective Li-ion percolation network in composite electrolyte for solid-state Li-metal batteries, L. Zhao, Y. Du, C. Wang, H. Li*, Y. Zhao*, Energy Storage Materials, 2024, 68, 103360. https://www.sciencedirect.com/science/article/pii/S2405829724001879?dgcid=coauthor 45. Tertiary-amine Based Network Polymer Electrolyte for Improving the Cyclic Stability of Na Metal Batteries with Large Capacity, Q. Zhang, T. Bian, Z., C. Wang, X. Song, R. Shi, Y. Zhao*, Advanced Energy Materials, 2024, 2303791. https://onlinelibrary.wiley.com/doi/10.1002/aenm.202303791. 44. Bimodal Block Molecule with Ether-type and Hydroxyl-type Oxygen Stabilizes Zn Anode in Super-Dilute Electrolyte, Z. Shi#, M. Li#, X. Fu, Y. Zhang, S. Jiao*, Y. Zhao*, Advanced Functional Materials, 2024, 2316427, https://onlinelibrary.wiley.com/doi/10.1002/adfm.202316427. 43. Cooperative Effect of Redox Mediator and Ion Selective Membrane to Inhibit the Shuttle Effect for Li-O2 Battery with Large Cyclic Capacity, D. Zhou, J. Zhang, T. Bian, Y. Tao, X. Liu, Q. Han, Z. Liu, S. Chen, J. Wang, P. Zhang, Y. Zhao*, Advanced Energy Materials, 2024, 14(2), 2303192. https://onlinelibrary.wiley.com/doi/10.1002/aenm.202303192. 43. High-Performance Li-S Batteries Boosted by Redox Mediators: A Review and Prospects, W. Jin, X. Zhang, M. Liu, Y. Zhao*, P. Zhang*, Energy Storage Materials, 2024, 67, 103223. https://www.sciencedirect.com/science/article/pii/S2405829724000515. 42. Construction of Inorganic/Polymer Tandem layer on Li Metal with Long-term Stability by LiNO3 Concentration Gradient Electrolyte, Z. Liu, Q. Zhang, X. Song, Y. Shi, X. Zhu, X. Liu, Y. Zhou, Z. Chen, Y. Feng, S. Chen, J. He, Z. Guo, Y. Zhao*, Small, 2024, smll.202312150, https://onlinelibrary.wiley.com/doi/10.1002/smll.202312150. 41. Electrolyte Solvation Chemistry for Stabilizing the Zn Anode via Functionalized Organic Agents, Y. Zhang, X. Fu, Y. Ding, Y. Liu, Y. Zhao*, S. Jiao*, Small, 2024, 2311407. https://onlinelibrary.wiley.com/doi/10.1002/smll.202311407. 40. Solvated metal complexes for balancing stability and activity of sulfur free radicals, X. Song#, C. Wang#, Z. Shen, K. Guo, J. Wu, Z. Guo, X. Liu, Y. Zhao*, eScience, 2024, 100225, https://www.sciencedirect.com/science/article/pii/S2667141723001799. 39. Functional Oriented Design of Composite Artificial Interface Layers Towards Stable Zinc Anodes In Aqueous Zinc-ion Batteries, Xiaoyu Zhang,+ W. Jin,+ M. Liu+, Y. Zhao*, P. Zhang*. Batteries & Supercaps, 2024, 7(1), e202300420. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/batt.202300420
38. Dual-path Fe migration in the bulk phase reconstructing high quality Ni-O-Fe units for high efficient oxygen evolution reaction. X. Wang#,*, C. Wei#, X. Song, Z. Wang*, Y. Zhao*, Applied Catalysis B: Environment and Energy, 2024, 341, 123279. https://www.sciencedirect.com/science/article/pii/S0926337323009220 37. Electronic-ferry in metal element migration promoting deep activation of NiFe based phosphide for high efficient and stable oxygen evolution reaction. X. Wang#*, Z. Hou#, N. Zhan, Z. Guo*, Y. Zhao*. Applied Catalysis B: Environmental, 2024, 340, 123186. https://www.sciencedirect.com/science/article/pii/S0926337323008299 36. Ordered and Fast Ion Transport of Quasi-solid-state Electrolyte with Regulated Coordination Strength for Lithium Metal Batteries, Q. Zhang, Z. Liu, X. Song, T. Bian, Z. Guo, D. Wu, J. Wei, S. Wu, Y. Zhao*, Angewandte Chemie International Edition, 2023, 62(30), e202302559. https://onlinelibrary.wiley.com/doi/10.1002/anie.202302559 35. Advances in Functional Organic Material-based Interfacial Engineering on Metal Anodes for Rechargeable Secondary Batteries, R. Shi#,*, Z. Shen#, Q. Yue, Y. Zhao*, Nanoscale, 2023, 15, 9256-9289, https://pubs.rsc.org/en/content/articlelanding/2023/NR/D3NR01306E 35. Recent Advances of Structural/Interfacial Engineering for Na Metal Anode Protection in Liquid/Solid-State Electrolytes, Z. Yang, R. Shi*, Z. Shen, Y. Zhao*, Nanoscale, 2023, 15, 11313-11345. https://pubs.rsc.org/en/content/articlelanding/2023/nr/d3nr01346d 34. In-situ Free Radical Supplement Strategy for Improving the Redox Kinetics of Li-S Batteries, Z. Shen#, Q. Gao#, X. Zhu, Z. Guo, K. Guo, X. Song*, Y. Zhao*, Energy Storage Materials, 2023, 57, 299-307. https://www.sciencedirect.com/science/article/pii/S2405829723000855?via%3Dihub 33. Metal Coordinated Polymer as Three-Dimensional Network Binder for High Sulfur Loading Cathode of Lithium–Sulfur Battery, Q. Gao#, Z. Shen#, Z. Guo, M. Li, J. Wei, J. He*, Y. Zhao*, Small, 2023, 19(28), 2301344. https://onlinelibrary.wiley.com/doi/10.1002/smll.202301344 32. Bioinspired Electrode for the Production and Timely Separation of Nitrile and Hydrogen, J. Jiao, X. Wang, C. Wei, Y. Zhao*, Small, 2023, 19(26), 202208044. https://onlinelibrary.wiley.com/doi/10.1002/smll.202208044 31. Inhibition of Polysulfides Shuttling in High Polarity Electrolyte via Liquid/Quasi-Solid Interface in Lithium Sulfur Batteries, Z. Guo, X. Song, X. Wang, C. Wang, X. An, X. Liu, W. Wu, T. Bian, Y. Zhao*, Science China Materials, 2023, 66(2), 505-512. https://www.sciengine.com/SCMs/article;JSESSIONID=b4787c9c-59ab-471d-b070-3446c3f0c298?doi=10.1007/s40843-022-2154-8&scroll= 30. Anion Concentration Gradient-Assisted Construction of a Solid–Electrolyte Interphase for a Stable Zinc Metal Anode at High Rates, X. He,Y. Cui,Y. Qian, Y. Wu, H. Ling, H. Zhang, X. Kong,Y. Zhao*, M. Xue, L. Jiang, L. Wen*, Journal of the American Chemical Society, 2022, 144(25), 11168. https://pubs.acs.org/doi/full/10.1021/jacs.2c01815 29. Decoupling Mass Transport and Electron Transfer by a Double-Cathode Structure of Li-O2 Battery with High Cyclic Stability, Q. Han#, W. Guo#, X. He, T. Liu, X. Liu, X. Zhu, T. Bian, L. Jiang, J. Lu*, Y. Zhao*, Joule, 2022, 6(2), 381-398. https://www.sciencedirect.com/science/article/pii/S2542435122000241?dgcid=author 28. Preparation of Ultrathin Graphene Film via Capillary Liquid Bridge for Uniform Lithium Nucleation in Anode Free Lithium Metal Battery, Z. Hou, X. Wang*, N. Zhan, Z. Guo, Q. Chen, J. Zhang, T. Bian, B. Hu*, Y. Zhao*, Energy Storage Materials 2022, 53, 254-263. https://www.sciencedirect.com/science/article/pii/S2405829722004494 27. Challenges and Advances of Organic Electrode Materials for Sustainable Secondary Batteries, R Shi, S Jiao, Q Yue, G Gu, K Zhang*, Y. Zhao*, Exploration, 2022, 2(4), 20220066. https://onlinelibrary.wiley.com/doi/10.1002/EXP.20220066. 26. Cationic Size Effect Promoting Dissolution of Nitrate Anion in Ester Electrolyte for Lithium-Metal Batteries, Z. Guo#, X. Song#, Q. Zhang, N. Zhan, Z. Hou, Q. Gao, Z. Liu, Z. Shen, Y. Zhao*, ACS Energy Letters, 2022, 7, 569-576. https://pubs.acs.org/doi/10.1021/acsenergylett.1c02495 25. A Single-Ion Conducting Network as Rationally Coordinating Polymer Electrolyte for Solid-State Li Metal Batteries, H. Li*, Y. F. Du, Q. Zhang, Y. Zhao*, F. Lian*, Advanced Energy Materials, 2022, 12(13), 2103530. https://onlinelibrary.wiley.com/doi/10.1002/aenm.202103530 24. Dynamic Active Site Evolution and Stabilization of Core-shell Structure Electrode for Oxygen Evolution Reaction, C. Y. Wei#, N. N. Heng#, Z. H. Wang, X. Song, Z. Sun*, X. Zhu, J. L. He, Y. Zhao*, X. B. Wang*, Chemical Engineering Journal, 2022, 435 (1), 134672. https://www.sciencedirect.com/science/article/pii/S1385894722001802?via%3Dihub 23. Decomposition Pathway and Stabilization of Ether-based Electrolytes in the Discharge Process of Li-O2 Battery, X. Liu, X. Song, Q. Zhang, X. Zhu, Q. Han, Z. Liu, P. Zhang, Y. Zhao*, Journal of Energy Chemistry, 2022, 69, 516-523. https://www.sciencedirect.com/science/article/pii/S2095495622000146 22. A Multifunctional Silicon-doped Polyether Network for Double Stable Interfaces in Quasi-solid-state Lithium Metal Battery, Q. Zhang, X. Liu, T. Bian, Z. Guo, X. Zhu, N. Zhan, Y. Zhao*, Small, 2022, 2106395. https://onlinelibrary.wiley.com/doi/10.1002/smll.202106395 21. Uniform Coverage of High-loading Sulfur on Cross-linked Carbon Nanofiber for High Reaction Kinetics in the Li-S Batteries with Low Electrolyte/Sulfur Ratio, W. Wu, X. Li, L. Liu, X. Zhu, Z. Guo, W. Guo, Q. Han, J. He, Y. Zhao*, Journal of Materials Chemistry A, 2022, 10,1433-1441. https://pubs.rsc.org/en/content/articlelanding/2022/TA/D1TA09408D#!divAbstract 20. Template Guiding for Regioselective Fabrication of Uniformly Sub-nanometric Pt Clusters in beta-Zeolites with High Catalytic Activity and Stability, Y. J. Tian, H. N. Duan, B. F. Zhang, S. Y. Gong, Z. J. Lu, L. Dai, C. Z. Qiao, G. Z. Liu*, Y. Zhao*, Angewandte Chemie International Edition, 2021, 60 (40), 21713-21717. https://onlinelibrary.wiley.com/doi/10.1002/anie.202108059 19. Biphasic Electrolyte Inhibiting the Shuttle Effect of Redox Molecules in Lithium Metal Batteries, X. Liu#, X. S. Song#, Z. J. Guo, T. F. Bian, J. Zhang, Y. Zhao*, Angewandte Chemie International Edition, 2021, 60(30), 16360-16365. https://onlinelibrary.wiley.com/doi/10.1002/anie.202104003 18. In situ Construction of Robust Biphasic Surface Layers on Li Metal for Li-S Batteries with Long Cycle Life, W. Guo#, Q. Han#, J. Jiao, W. Wu, X. Zhu, Z. Chen*, Y. Zhao*, Angewandte Chemie International Edition, 2021, 60(13), 7267-7274. https://onlinelibrary.wiley.com/doi/10.1002/anie.202015049 17. Perfecting the Electrocatalysts via Imperfections: Towards Large Scale Deployment of Water Electrolysis Technology, S. Jiao, X. Fu*, S. Wang*, Y. Zhao*, Energy & Environmental Science, 2021, 14, 1722-1770. https://pubs.rsc.org/en/content/articlepdf/2021/EE/D0EE03635H?page=search 16. Greatly Promoted Oxygen Reduction Reaction Activity of Solid Catalysts by Regulating the stability of Superoxide in Metal-O2 Batteries, H. Wang#, L. Liu#, X. Liu, Y. Jia, P. Zhang*, Y. Zhao*, Science China Materials, 2021, 64(4), 870-879. https://engine.scichina.com/publisher/scp/journal/SCMs/doi/10.1007/s40843-020-1519-9?slug=abstract 15. Hierarchy Carbon Nanotube Forest Supported Metal Phosphide Electrode for the Efficient Overall Water Splitting, Z. Wang, C. Wei, X. Zhu, X. Wang, J. He*, Y. Zhao*, Journal of Materials Chemistry A, 2021, 9, 1150-1158. https://pubs.rsc.org/en/content/articlelanding/2021/ta/d0ta10964a#!divAbstract 14. A Liquid/Liquid Electrolyte Interface Inhibiting Corrosion and Dendrite Growth of Lithium in Lithium-Metal Batteries, X. He, X. Liu, Q. Han, P. Zhang, X. Song*, Y. Zhao*, Angewandte Chemie International Edition, 2020, 59(16), 6397-6405. https://onlinelibrary.wiley.com/doi/10.1002/anie.201914532 13. Separation of Metal-N4 Units in Metal-organic Framework for Preparation of M-Nx/C Catalyst with Dense Metal Sites, B. Hu#, X. Zhu#, X. An, C. Wang, X. Wang*, J. He, Y. Zhao*, Inorganic Chemistry, 2020, 59(23), 17134–17142. https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.0c02420 12. Self-assembly Induced Metal Ionic-Polymer Derived Fe-Nx/C Nanowire as Oxygen Reduction Reaction Electrocatalysts, X. Zhu, B. Hu, C. Wang, X. An, J. He, X. Wang,Y. Zhao*, Journal of Catalysis, 2020, 391, 1-10. https://www.sciencedirect.com/science/article/pii/S0021951720303274 11. Inhibiting Shuttle Effect by Artificial Membranes with High Lithium-ion Content for Enhancing the Stability of Lithium Anode, D. Liang, T. Bian, Q. Han, H. Wang, X. Song, B. Hu*, J. He*, Y. Zhao*, Journal of Materials Chemistry A, 2020, 8(28), 14062-14070. https://pubs.rsc.org/en/content/articlelanding/2020/ta/c9ta13304f#!divAbstract 10. A Lattice-matched Interface between In-situ/Artificial SEIs Inhibiting SEI Decomposition for Enhanced Lithium Storage, X. Song, S. Li, X. Li*, Y. Zhang*, X. Wang, Z. Bai, H. M. K. Sari, Y. Zhao*, J. Zhang, Journal of Materials Chemistry A, 2020, 8(22), 11165-11176. https://pubs.rsc.org/en/Content/ArticleLanding/2020/TA/D0TA00448K#!divAbstract 9. Inhibition of Discharge Side Reaction by Promoting Solution-mediated Oxygen Reduction Reaction with Stable Quinone in Li-O2 Batteries, X. Liu, P. Zhang, L. Liu, J. Feng, X. He, X. Song, Q. Han, H. Wang, Z. Peng, Y. Zhao*, ACS Applied Materials & Interfaces, 2020, 12(9), 10607-10615. https://pubs.acs.org/doi/10.1021/acsami.0c01105 8. Promoting Surface-mediated Oxygen Reduction Reaction of Solid Catalysts in Metal-O2 batteries by Capturing Superoxide Species, P. Zhang, L. L. Liu, X. F. He, X. Liu, H. Wang, J. He, Y. Zhao*, Journal of the American Chemical Society, 2019, 141(15), 6263-6270. https://pubs.acs.org/doi/10.1021/jacs.8b13568 7. Surface and Morphology Structure Evolution of Metal Phosphide for Designing Overall Water Splitting Electrocatalyst, Z. Wang, N. Heng, X. Wang*, J. He, Y. Zhao*, Journal of Catalysis, 2019, 374, 51-59. https://www.sciencedirect.com/science/article/pii/S0021951719301691 6. Supramolecular Fluorescent Hydrogelators as Bio-imaging Probes, N. Mehwish, X. Dou, Y. Zhao*, C. L. Feng*, Materials Horizons, 2019, 6(1), 14-44. https://pubs.rsc.org/en/content/articlehtml/2019/mh/c8mh01130c 5. Bimetallic Oxide Fe1.89Mo4.11O7 Electrocatalyst with Highly Efficient Hydrogen Evolution Reaction Activity in Alkaline and Acidic Media, Z. Hao, S. Yang, J. Niu, Z. Fang, L. Liu, Q. Dong,* S. Song, Y. Zhao*, Chemical Science, 2018, 9(25), 5640-5645. https://pubs.rsc.org/en/content/articlelanding/2018/sc/c8sc01710g#!divAbstract 4. Function and Stability Orientation Synthesis of Materials and Structures in Aprotic Li-O2 Batteries, P. Zhang, Y. Zhao*, X. B. Zhang*, Chemical Society Reviews, 2018, 47(8), 2921-3004. https://pubs.rsc.org/en/content/articlelanding/2018/CS/C8CS00009C#!divAbstract 3. Tailoring Carbon Materials Substrate to Modify the Electronic Structure of Platinum for Boosting its’ Electrocatalytic Activity, J. L. He#, X. F. He#, L. L. Liu, B. B. Hu, F. Bai, P. Zhang, Y. Zhao*, Journal of the Electrochemical Society, 2018, 165(5), F247-F252. http://jes.ecsdl.org/content/165/5/F247.short 2. Superaerophobic Electrode with Metal@Metal-Oxide Powder Catalyst for Oxygen Evolution Reaction, J. L. He#, B. B. Hu#, Y. Zhao*, Advanced Functional Materials, 2016, 26(33), 5998-6004. https://onlinelibrary.wiley.com/doi/10.1002/adfm.201670224/abstract 1. Efficient Oxygen Reduction Reaction Electrocatalysts Synthesized from an Iron-coordinated Aromatic Polymer Framework, Y. Zhao, K. Kamiya, K. Hashimoto*, S. Nakanishi*, Journal of Materials Chemistry A, 2016, 4(10), 3858-3864. https://pubs.rsc.org/en/content/articlepdf/2016/ta/c5ta08316h 入职河南大学前 10. In situ CO2-emission Assisted Synthesis of Molybdenum Carbonitride Nanomaterial as Hydrogen Evolution Electrocatalyst, Y. Zhao, K. Kamiya, K. Hashimoto*, S. Nakanishi*, Journal of the American Chemical Society, 2015, 137, 110-113. https://pubs.acs.org/doi/abs/10.1021/ja5114529 9. Efficient Bifunctional Fe/C/N Electrocatalysts for Oxygen Reduction and Evolution Reaction, Y. Zhao, K. Kamiya, K. Hashimoto*, S. Nakanishi*, Journal of Physical Chemistry C, 2015, 119, 2583. https://pubs.acs.org/doi/abs/10.1021/jp511515q 8. Nitrogen Doped Carbon Nanomaterials as Non-metal Electrocatalysts for Water Oxidation, Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi*, K. Hashimoto, Nature Communications, 2013, 4, 2390. https://www.nature.com/articles/ncomms3390 7. Hydrogen evolution by tungsten carbonitride nanoelectrocatalysts synthesized by the formation of a tungsten acid/polymer hybrid in situ, Y. Zhao, K. Kamiya, K. Hashimoto*, S. Nakanishi*, Angewandte Chemie International Edition, 2013, 125, 13638-13641. https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201307527 6. Self-Supporting Oxygen reduction electrocatalysts made from a nitrogen-rich network polymer,Y. Zhao, K. Watanabe*, K. Hashimoto*, Journal of the American Chemical Society, 2012, 134, 19528-19531. https://pubs.acs.org/doi/10.1021/ja3085934 5. Efficient oxygen reduction by a Fe/Co/C/N nano-porous catalyst in neutral medium, Y. Zhao, K. Watanabe*, K. Hashimoto*, Journal of Materials Chemistry A, 2013, 1, 1450. 4. Poly(bis-2,6-diaminopyridinesulfoxide) as an active and stable electrocatalyst for oxygen reduction reaction, Y. Zhao, K, Watanabe*, K. Hashimoto*, Journal of Materials Chemistry, 2012, 22, 12263. 3. Three-dimensional conductive nanowire networks for maximizing anode performance in microbial fuel cells, Y. Zhao, K. Watanabe, R. Nakamura, S. Mori, H. Liu, K. Ishii*, K. Hashimoto*, Chemistry - A European Journal, 2010, 16, 4982. 2. High-performance all-solid-state dye-sensitized solar cells utilizing imidazolium-type ionic crystal as charge transfer layer, Y. Zhao, J. Zhai*, J. L. He, X. Chen, L. Chen, L. B. Zhang, Y. X. Tian, L. Jiang, D. B. Zhu, Chemistry of Materials, 2008, 20, 6022. 1. Enhanced photocatalytic activity of micro/nanoporous hierarchical TiO2 films, Y. Zhao, X. Zhang, J. Zhai*, Z. Liu, L. Jiang, S. Nishimoto, T. Murakami, A. Fjishima*, D. B. Zhu, Applied Catalysis B: Environmental, 2008, 83, 24.哦了 L |
河南大学纳米科学与材料工程学院 版权所有@ALL Rights Reserved 技术支持: 蓝创科技